講義No.09836 数学

未解決問題を解明したい! それが数学研究のモチベーション

未解決問題を解明したい! それが数学研究のモチベーション

フィボナッチ数列の性質

フィボナッチ数列は、教科書にも出てくるので聞いたことがあるでしょう。その定義は、前とその前の数を加えたものが次の数字になる、というものです。各数字をFnとすれば、「F1=1 F2=1 F3=2 F4=3 F5=5……」となります。この数列には面白い性質があります。例えば、「F1+F2=2」、「F1+F2+F3=4」のように、各数字を加えた場合、右辺の数字にそれぞれ1を加えるとF4、F5と同じ数になります。数の起源が異なるのに同じ数字になるのです。

未解決の問題「ウォール予想」

また、(F1²)+(F2²)+(F3²)=1+1+4=6となりますが、これは実は、F3とF4を乗じたものと同じです。したがって、F1からF4までの数字の二乗を加えたものは、すべてを計算しなくても、F4とF5を乗じる、つまり3×5を計算すれば答え(15)が出ます。これらの例は、二乗した数字を加えたものなので、それぞれの数字を一辺とする正方形を隣接させて図形をつくると、それぞれの面積の和として表現することもできます。
これらの性質は証明することができますが、一方で、証明できない性質もあります。F1から順に、素数で割った余りの数列をつくります。例えば、2で割ると余りは、「1、1、0、1、1、0……」となり、「1、1、0」の周期で繰り返します。この場合は周期の数は3ですが、素数で割った場合の周期の数を一般的に導き出す公式は、今のところないと予想されており、「ウォール予想」と呼ばれています。

何を問題にするかが数学者の個性

数学の答えは1つではありません。まず数列の性質を見いだすことが重要です。これは、自分で問題をつくることと同じです。次に、この性質を証明することが求められます。どういう性質を見いだすか、何を証明するかは、数学者の個性です。その中で、解決できない問題に出会うことがあります。それに立ち向かうことが、数学研究のモチベーションとなっているのです。

※夢ナビ講義は各講師の見解にもとづく講義内容としてご理解ください。

※夢ナビ講義の内容に関するお問い合わせには対応しておりません。

先生情報 / 大学情報

和歌山大学 教育学部 数学教育 准教授 北山 秀隆 先生

和歌山大学 教育学部 数学教育 准教授 北山 秀隆 先生

興味が湧いてきたら、この学問がオススメ!

数学、代数学、整数論

メッセージ

私の専門である整数論は、高校の数学Aの教科書で勉強した整数の性質をさらに発展させたような研究分野です。例えば、2x+3y=1の整数解をすべて求めなさいという問題は、よく知られています。この問題をもっと複雑にしたような、人類がまだ解き方を知らないような問題がたくさん残されています。
そのような未解決な問題を解き明かしていくのが、整数論という研究分野です。問題の見かけは単純なのに、実はとてつもなく奥が深いのが整数論なのです。あなたも大学で専門的な数学を学び、研究してみませんか。

先生への質問

  • 先生の学問へのきっかけは?
  • 先輩たちはどんな仕事に携わっているの?

和歌山大学に関心を持ったあなたは

和歌山大学は未来を託そうとする若者、保護者のみなさんの願いを受けとめ、若者とともに希望ある未来を創り出したいと決意しています。
新たな学びの場・新たな生活の場へ、期待とともに不安もあると思いますが、国立大学の強みは、学生数に対して教員数が多く、学生と先生の"つながり"が強固なことです。なかでも和歌山大学は、小規模クラス授業や対話的授業を重視するなどきめ細やかな教育と、行き届いた学生生活支援の体制を整えています。そして、卒業後の進路・就職を拓くキャリア・サポートには定評があります。