ナノサイズの分子を組み上げ、新しい半導体デバイスを作る!
ナノメートルの世界とは
コンピュータのCPU(中央演算処理装置)は、シリコンウエハをリソグラフィ技術で微細加工して作られています。最新のCPUの回路の線幅は約10ナノメートルです。
シャープペンシルの芯の太さは500マイクロメートル(ミクロン)です。赤血球は7~8マイクロメートル、細菌は1~2マイクロメートルで、この程度の大きさまでなら光学顕微鏡で見ることができます。1ナノメートルは1マイクロメートルのさらに1000分の1です。ちなみに原子1個の大きさは、約0.1ナノメートルです。ここまで小さいと光学顕微鏡では見えないので、走査型トンネル顕微鏡という特殊な顕微鏡を使う必要があります。
次世代の半導体デバイス材料「グラフェン」
10ナノメートルの微細加工技術は限界に近づいています。今よりも回路の線幅を小さくしようとすれば、別の方法、すなわち分子を1個ずつブロックのように組み上げて作る方法が有望です。グラフェンは、炭素原子を蜂の巣のような六角形の格子構造に組み上げたシート状の物質です。優れた電導性と熱伝導性を持つという特色があります。この素材を細いリボン状に切り加工すれば、新しい半導体デバイスを作ることが可能です。銅などに比べれば大量の電気を流すことができ、熱伝導性に優れるので熱で自分自身が溶けることもありません。厚みは1原子の大きさなので、現在よりもさらに微細になります。
自己組織化で製造プロセスを削減
このような物質を作るには精密な化学反応の制御が必要です。この製造方法の特色は、あらかじめ結合の強さや形状を決めて化学反応を設計すれば、自動的に材料ができることです。これを「自己組織化」と呼んでいます。この方法なら、ナノメートルサイズの微細な構造を製造することができるだけではなく、製造プロセス自体の大幅削減が可能です。
さらに、研究開発の過程で分子の結合に関して新しい知見を得たり、思いがけない現象に出会ったりすることもあります。そこから、新たな学問や研究の道が開けるのです。
※夢ナビ講義は各講師の見解にもとづく講義内容としてご理解ください。
※夢ナビ講義の内容に関するお問い合わせには対応しておりません。
先生情報 / 大学情報
広島大学 工学部 第二類 電子システムプログラム 准教授 鈴木 仁 先生
興味が湧いてきたら、この学問がオススメ!
電子工学、物理学、物質科学先生への質問
- 先生の学問へのきっかけは?
- 先輩たちはどんな仕事に携わっているの?